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ABSTRACT

EXPLICIT AND IMPLICIT CALCULATIONS OF TURBULENT
CAVITY FLOWS WITH AND WITHOUT YAW ANGLE

Guan-Wei Yen

Old Dominion University

Advisor: Dr. Oktay Baysal
Computations have been performed to simulate turbulent supersonic flows past
three-dimensional deep cavities with and without yaw. Simulation of these self-sustained
oscillatory flows have been generated through time accurate solutions of the Reynolds
averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack,
finite-difference, (2) implicit, upwind, finite-volume schemes. The second scheme, which
is approximately 30% faster, is found to produce better time accurate results. The
Reynolds stresses have been modeled, using the Baldwin-Lémax algebraic turbulence
model with certain modifications. The computational results include instantaneous and
time averaged flow properties everywhere in the computational domain. Time series
analyses have been performed for the instantaneous pressure values on the cavity floor.
The time averaged computational results show good agreement with the experimental
data along the cavity floor and walls. When the yaw angle is nonzero, there is no
longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero
yaw angle flow. The dominant directions and inclinations of the vortices are
dramatically different for this nonsymmetric flow. The vortex shedding from the cavity

into the mainstream flow is captured computationally. This phenomenon, which is due

to the oscillation of the shear layer, is confirmed by the solutions of both schemes.
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1.1 Objectives

It is often inevitable to have a cavity on an acrodynamic configuration, such as,

@ weapons bay, a landing gear, or similar recessed areas. Carrying weapons internally

in high speed fighter-bomber aircraft (e.g. B-1, FB-111) offers many benefits, suc. as,

greater maneuverability, longer cumbat range,
(SN I. L4
aerothermal heating preblems, and reduction of radar detection signaty:

reduction of weapon and landing gzecr

) Howeoo

J\ & cavity flow at high speed may be a scurce of flow instais'.ii.. . ine presence of a

-\? cavity fow structure may cause large fluctuations of pressure and velocity, which
) generate strong acoustic waves. This may damage the aircraft structure, the weapon
¢ devices, and affect the avionics on board.

% Earlier reports in the literature (e.g. refs. 1, 2) have provided descriptions of

cavity flows. Many investigations, both experimental and computational, have bee:

W conducted to study the flowfield inside two and three-dimensiona) rectangular cavities.
; Some examples of viscous calculations of cavity flowe are given in refs 3-8 The
_‘ objectivee of this research effort are focused on further understanding ¢f the cavity
ZSB; flow phenomenon for deep cavities, and to analyze the pressure fluctuations within deep

cavities, Furthermore, it is aimed to provide:

1. valid computationa! solutions for deep cavity flows at

supr; sonic speeds,
. . 2. qualitative understanding of three-dimensional cavity flows through enhanced
\?“:;..i computational graphics,
3 1
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3. valid computational solutions for flow past a cavity at yaw,
4.  comparison of the aolutiom for cavity flows from two different numerical

schemes (explicit, finite-difference, MacCormack scheme and implicit, finite

volume, upwind scheme),

5. a study of three-dimensinnal unsteady flow separation,

6. a comparison of time averaged and instantaneous properties of the flow

solution obtained computationally with the experimental data.

A literature survey on cavity flows are given in the next two sections. The
Physics of cavity flows and their classification are given in Chapter 2. The governing
equations and the corresponding boundary conditions are detailed in Chapter 3. The
solution algorithms and the grid generations are discussed in Chapter 4. The results

are discussed in Chapter §, and conclusions and recommendations are given in Chapter
6.

1.2 Experimental Literature on Cavity Flows

Roshko [2) studied the time-averaged effects of flows over various cavities at low
Mach numbers. Pressure coefficients at various points on the cavity walls and floor
were measured and friction coefficients were calculated. For a deep cavity, a single
vortex was seen to exist inside, and smaller secondary vortices were also observed at
the corners of the cavity. For a shallow cavity, the shear layer was seen to be at-
tached to the floor of the cavity enclosing vortices on either side. Roshko concluded
that the increased drag due to the cavity stemmed from the stagnation pressure on
the downstream cavity wall as the shear layer impinged on it Karamcheti {1] per-
formed an extensive study of the sound radiated by flows over rectangular cavities
using a flat plate with a cavity of variable length mounted in a blow down tunnel.

The Mach number was varied from 0.25 to 1.5. Schlieren and interferometer techniques
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were uned to visurlize the acoustic fluctuations and to get quantitative measures of the

decibe! level and directionality of the radiated sound. The boundary layer was changed

:/l | o
| j .. between laminar and turbulent regimes using the flat plate angle of atiack and a trip

A .

“4 wire, and its characteristics were measured using hot wire anemumetry, He observed

N BN | i
i that below a minimum cavity length, the shear layer jumped across the cavity without »
)

impinging on the downstream wall or generating acoustic oscillations. Above this
length, the wavelength of the oscillations was proportional to the cavity length. When

the boundary layer was turbulent, several harmonics were observed. However, the peak =

amplitudes observed were considerably less than in the case of the laminar boundary
> layer. |

MacDearmon (6] has presented the results of systematic variations of depth, span, b

and upstream and downstream lip radii on the flow characteristics in a rectangular ‘ ,
cavity on a flat plate at a Mach numb¢ .f 3.55. Plumbee et al. [7] studied the

i 8 -
L s SRt S

acoustic response of large cavities in flows of Mach number 0.2 to 5.0. Both discrete | "
‘ % tones and broadband noise generated by the cavity flow were observed. Repid o
: { fluctuations occurred in the separated boundary layer, and depending on flow cenditions, R

both expansion waves and shocks were observed at the separation point near the cavity. Ci
The static pressure in the cavity increased with increasing cavity depth. The deep - {

cavities would resonate primarily in the depth modes, while longer cavities would show
lengthwise modes and random buffeting. The most significant drawback of his theory !
was that shear layer turbulence was considered to be the driving mechanism for

periodic oscillations, contrary to the observations of Karamcheti [1) and others that the

oacillations were much stronger when the shear layer was laminar as opposed to

SNSRI, £ AT AR T
$

N

turbulent.
East [8] observed that deep cavity resonance appeared to result from simultaneous

doubly-tuned amplification of shear layer unsteadiness by both the shear layer edge tone
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and the cavity enclosure acting as an ncoustic resonator. Three-dimensional effects due
to variations in the transverse dimension of the cavity did not appear to alte: the
unsteady effects. Rossiter (9] performed wind tunnel tests on subsonic and transonic
flows ( 04 < M < 1.2) over shallow cavities. Cavities of L/D >10 were found to
generate  smooth broadband pressure fluctuation spectra, as opposed to cavities at L/D
of 1 and 2, which generated dominant periodic fluctuations. Higher harmonics of the
discrete tones were attributed to the distorted wave formes of the oscillations. High
speed shadowgraph motion pictures showed that the shear layer rolled up into discrete
vortices, shed periodically from cavity leading edge.

Spee [10] observed periodic inflow and outflow of air close to the trailing edge,
and an accompanying lateral displacement of the shear layer. Continuous production
of vorticity occurred at the leading edge, as opposed to discrete vortex shedding. The
"captive vortex" or recirculation zone -in the cavity was seen to grow and shrink
periodically. Root-mean-square pressure fluctuations reached 40% of dynamic pressure,
which was too large to be explained by the linear acoustic theory. At low Mach
numbers, the acoustic source exhibited monopole behavior. The radiated sound waves
were sinusoidal initially, later becoming sawtoothed as they propagated into the far
field. .

McGregor and White [11] measured the drag of rectangular cavities in supersonic
and subsonic flow (0.3 < M < 3.0), they alse provided schlieren pictures. The pres-
sure wave generated by the impact of the vortex at the trailing edge went upstream.,
and another vortex was shed. The steady-state drag of the cavity was attributed to
the impact pressure at the downstream wall. When resonance occurred, a 250%
increase 1 drag was observed, which was attributed to the large deflection of the
shear layer and resultant loss of momentum. Heller, Holmes, and Covert [12)

conducted wind tunnel tests on cavities with L/D ratios of 4 to 7 over a Mach number

e e L. . - R e g & Lk ameeenee- *—.-e—:::ﬂ::.—.‘rn
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5
range from 0.8 to 3, obtaining spectra of pressure fluctuations inside the cavity and
under the approaching boundary layer. They also observed stronger spectral peaks
when the boundary layer was laminar. Pressure fluctuations were seen to be highest
near the trailing edge, falling off inversely with distance towards the leading edge.

Stallings and Wilcox (13] hiuve measured flow past various cavities to obtain
cavity pressure distributions for a wide range of supersonic Mach number. The test
Mach number were varied from 15 to 1.86 for cavity depths and widths from 0.5 to
2.5 inches and cavity lengths from 0.5 to 1.2 inches. These pressure distributions
together with Schlieren photographs were used to define the critical values of cavity
length to depth ratio (L/D)_ that separate deep cavity flows from shallow cavity flows.
It was further observed that a large improvement in the correlation of measured cavity
centerline pressure distribution for cavities of various depths were obtained when both
the cavity width to depth (W/D) ratio and length to depth (L/D) ratio were held
constant rather than L/D alone. Decreasing cavity width resulted in a reduction in

(LID)Q. Three-dimensional effects in the form of large lateral pressure gradients )

occurred on the. rear face of the cavities that had closed cavity flow flelds.

Heller and Bliss [14] conducted wind tunnel tests on cavities of L/D ratios from
2.3 to 5.5 and over a Mach number range of 0.8 to 2.0. Detailed information on the
normalized levels of the first three resonant modes in the cavity for a range of cavity
L/D and free-stream Mach numbers were obtained. It was shown that the cavity
temperature was close to the stagnation value with recovery factors between 0.8 and
0.95. Shaw [15) performed wind tunnel tests on a cavity model with variable length
to depth ratio. The test Mach numbers were 1.5 to 2.88 and Reynolds numbers from
1.0 to 4.0 millionffoot. The model was tested at two angles of attack, two yaw angles

and two cavity widths. Acoustic data were obtained for almost all combinations of the




6
test parameters. Sound pressure levels as high as 165dB were measured. Reynolds
number was shown to strongly affect excitation of specific resonant modes.

1.3 Literature on Prediction Methods for Cavity Flows

Weiss and Florsheim [16) modeled a low Reynolds number flow in a deep cavity,
neglecting convection of vorticity, and obtained results showing steady, double-celled
recirculating flow inside the cavity. Pan and Acrivos [17] used a relaxation technique
to obtain creeping-flow solutions for rectangular cavities of L/D ratios 0.2 to 4.
According to their results, the steady flow in a cavity at high Reynclds number
consisted of a single core of uniform vorticity, with viscous effects confined to their
shear layers near the boundaries. For infinitely deep cavities, the viscous and inertial
forces would be comparable at all Reynoids numbers.

Mehta and Lavan [18] calculated the flow in a two-dimensional channe! with a
rectangular cavity in the lower wall and the upper wall moving at uniform velocity.

They solved the Navier-Stokes equations for a laminar incompressible flow. O'Brien [19)

studied closed streamlines associated with the channel flow over a cavity. The viscous ‘

Stokes flow in a rectangular cavity with parallel shear flow was calculated by a direct
finite difference technique, Nallaswamy and Krishnaprasad [20] studied steady cavity
flows at high Reynolds numbers ( 0 < Re < 50,000). Three fully viscous eddies were
found inside the cavity, and obtained velocity, temperature, vorticity, and heat flux
profiles inside the cavity.

Bilanin and Covert [21] assumed that shear layer instability as well as interaction
between the shear layer and the cavity trailing edgn were required to sustain discrete
frequency oscillations. They modeled the shear layer as a vortex sheet excited at the
leading edge by a periodic pressure pulse, and the pressure fluctuation at the trailing
edge as an acoustic monopole. They obtained quantitatively correct acoustic mode

shapes and possible excitation frequencies for shallow cavities for 0.8 < M < 3.0.

N

-




7
Smith and Shaw [22) developed empirical prediction methods for modal frequencies,
modal amplitudes, broadband amplitudes, L/D effects, Mach number effects, and
.. longitudinal distribution of fluctuating pressures.
Block [23) studied the noise response of cavities of .varying dimensions at subsonic
speeds. She included the effect of the L/D ratio in Rossiter's model for oscillation

frequencies, and the maximum amplitude. [ler formula for the maximum-amplitude

J

# Mach number was of the form:

L M=(I/KNL/DY {4n(} +A (LUDJs-[(UD) + 0514)} .1
) where K is the real part of the wave number of the disturbance traveling down-
é stream, n is the mode number, and A and B are empirical constants. Interactions

—J\' bet'wron the depth and length modes were found.

Hardin and Mason [24] developed a potential flow model of two-dimensional cavity

oo,:é flow in which the shear layer was represented by discrete rectilinear vortices in order
\ to predict and explain the broadband noise generation phenomenon. The spe;tra and

_ r_f directivity of the quadrupole noise source determined by their theory were found to

d'% compare well with observed results for real aircraft. Borland [25] solved the two-

J:E dimensional Euler equations for the time-dependent inviscid compressible flow over a

~ & cavity. He modeled the shear lager oscillation and used a piston at the rear bulkhead
m to simulate the mass addition and removal at the trailing edge of the cavity.

Hankey and Shang [26] analyzed pressure oscillations in an open cavity using the
unsteady Navier-Stokes equations. With supersonic flow outside the cavity, the Mach
number inside the cavity was found to be 0.5. The sound inside the cavity propagated
upstream at about half the freestream velocity, The shear layer was scen to be
unstable for low frequencies such that

W 4T) > KU 12)

where K is the boundary layer thickness, and U the freestream velocity. Short cavities

W
N




8
whose lengths were less than 277K would not resonate. Above M=25, no Rayleigh

instability was found for the shear layer. Peak amplification occurred at half the cut-
off frequency, so that higher harmonics could exist. The maximum intensity of pressure
oscillations occurred at about M=1.

Brandeis (27) studied: the effects of altering the length and aspect ratio of
rectangular cavities on the development of the shear layer. He used an interactive
method which adapted the compressible boundary-layer mode! for the flow within the
cavity. His results showed the location of the stagnation points to be sensitive
primarily to span variation. - Shaw et al (28] modified Rossiter's formula to improve
correlation with measured data for cylindrical and rectangular cavities over the range
04 < M < 12 Pathasaraty and Cho [29) developed empirical design equations for
the dimensions, frequencies, and root-mean-square pressure amplitudes of cylindrical
aerodynamic whistles.

Baysal and Stallings [30] performed calculations for two dimensional cavities over
an L/D range of 6,12, and 16 at a Mach number of 1.5, and compared the
computational and experimental pressure data. An upwind, finite-volume scheme was
used to solve the complete Navier-Stokes equations. Rizzeta [31] presented a numerical
solution for the unateady flow over a three-dimensional cavity at a freestream Mach
number of 1.5 and Reynolds number of 1.5 million. The self sustained oscillatory
motion within the cavity was generated numerically by integration of the time-dependent
compressible three-dimensional Navier-Stokes equations. Comparisons with experimental
data were made in terms of the mean static pressure and overall acoustic sound
pressure levels within the cavity.

Baysal, Srinivasan, and Stallings (32) performed calculations on three-dimensional
deep and shallow cavities of L/D= 6, and 16 for supersonic fl,v. They used the

MacCormack scheme to solve time-dependent complete Navier-Stokes equations.
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Comparisons with experimental data were made in terms of SP! (sound pressure level)
and time-averaged pressure coefficients. Computational pressure fluctuations were
transferred from time domain w frequency domain using the Fourier transformation.

Suhs and Jordan [33] used the Chimera scheme to divide the computational
domain into two overlapping grid regions, then used an implicit algorithm to solve the
thin-layer Navier-Stokes equations. Numerical computations were performed at Mach
numbers of 0.74, 0.95 and 1.5, and L/D ratios of 4.5 and 9.9. They have added
consideration of acoustic suppression device(saw tooth fence) into their code and goi the
e;)mputational sound pressure level results.

. Baysal and Srinivasan [34] presented a computational investigation of subsonic
and transonic flows past 3-D deep and transitional cavities. Computational simulations
of these self induced oscillatory flows have been generated through time-accurate
solutions of the Reynolds ;veraged full Navier-Stokes equations, using the explicit
MacCormack scheme. The computational results, which are compared with the
experimental data, include instantaneous and time averaged flow properties everywhere
in the computational zone. Time series analyses have been performed for the
instantaneous pressure values on the cavity floor.

Om (35] conducted a numerical study of cavity-flow phenomenon on a modified
Boeing 767. A two-dimensional Navier-Stokes code was used to simulate the flow field.
The code employed the explicit MacCormack scheme. The investigation was aimed at
examining the unsteadiness of the shear layer and obtaining details of the flowfield.
Cavity flow was simulated for two different cavity sizes as well as for two different
ramp shapes. The computational results indicated that the shear layer stability depends
very strongly on the shape of the aft ramp, and the effect of cavity size was negligible

on the shear layer stability.

i‘
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Baysal and Srinivasan [36) performed numerical simulations of supersonic turbulent
flows by solving the Reynolds-averaged full Navier-Stokes equations by an implicit finite-

volume method. Several examples of two dimensional solutions are given to illustrate

the k-€ turbulence mode! for wall and free turbulent shear flows.
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CHAPTER 2
PHYSICAL DESCRIP™ ON

2.1 Types of Cavity Flows

A cavity in a flat plate changes the flow field and causes a significant increuse

in the fluid drag. The flow structure within a rectangular cavity is complex, vortical,

three-dimensional and unsteady. According to the ratio of the cavity length to depth,

transitional and shallow (13] as illustrated in
ties with /D

the cavity can be classified as deep,
Fig.2.1. A deep cavity is one for which L/D is less than 10, and cavi

greater 13 are called shallow. When L/D is between 10 and 13, it is called a transi-

tional cavity.

For a shallow cavity( L/D > 13 ), the flow is likely
For a deep cavity(L/D < 10),

to reattach on the bottom

of the cavity and thus form two recirculating regions.

a single vortex is observed, usually somewhat downstream of the middle of the cavity.

Small secondary vortices rotating counter to the main vortex have been observed near

ikely to form below the
deep

the front corners. In very deep cavities, a second vortex is |}

first one, forming a double-celled structure [37). The resonant mode frequencies or

cavities have been observed to change considerably with L/D.

The general flow structure of a deep cavity is shown in Fig. 2.2. After the initial

expansion of the flow into the cavity, a shear layer is formed between the high-speed

external flow and the slower internal flow. The water table simulation study of the

deep cavities by Heller and Bliss {14] showed that unsteady motion of the shear layer
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leads to mass being pumped in and out at the cavity trailing edge. This effect
generates forward travelling waves in the cavity that reflect from the front bulkhead
and become rearward traveling waves. The shear layer is pulled continuously into and
then pushed out of the cavity due to the pressure oscillgtions inside the cavity. When
the cavity pressure is lower than the freestream pressure, the shear layer is deflected
downwards pumping mass and momentum into the cavity. This ingested mass is slowed
down by various dissipative processes within the cavity, therefore increasing the cavity
prassure above the freestieam pressure. The shear layer is then deflected out of the
cavity by the excess pressure and mass is pumped out of the cavity with low mo-
mentum. This oscillatory process extracts additional freestrean momentum during the
cycle. A series of sketches which shows the striges of such a cycle are showr in
Fig.2.3. The choice of a starting point for the cycle is arbitrary, and it is necessary
to review the entire process to understand completely the conditions at the beginning.

2.2 Flow in a Deep Cavity

Cavities with L/D < 10 exhibit open cavity flow structure. In the external flow,
the wave patterns at the ioading and trailing edges of the cavity depend on shear layer
positions. A supersonic flow past a cavity is shown in Fig. 2.4. High pressure ahead
of the rear face within the cavity, venting into the low pressure region downstream of
the front face, cause the shea: layer to flow over ti.e cavity. The pressure coeflicients
over the cavity floor are slightly positive and rslativeiy constant with the exception of
a small adverse pressure gradient ahead of the resr fece, that is associated with the
shear layer impinging on the outer edge of the rear face.

In Fig. 2.4(a), a separated shear layer is shown to approach and flow over the
trailing edge. Thereafter, the shear layer deflects down, thus exposing the trailing edge

to the free stream, which causes a shock front to occur at the trailing edge.
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5 Simultanecusly, the downward mo.lon of the shear layer causes & pressure wave (0
' appear in the corner region of the trailing-edge bulkhead and the floor. This pressure
i wavo moves toward the leading edge. The preasure wave also causes the shear layer
‘ above to bend outward into the free stream. This outward bend cauves a shock front
' to propagate, along with the pressure wave, in the upstream direction. v
7 When the shear layer is abuve the trailing edge (Fig. 2.4b), there seems to be
: no significant external wave system as a downstream wave is arriving. It must be N
; recalled that the shear layer disturbance associated with this wave moves at a subsonic '
| speed relative to the external flow. ' b
At the leading edge (Fig. 2.4c and d), as an upstream wave approaches the leading '

edge, the shear layer is bent downward and there is an expansion wave at the edge
. as well as the upstream traveling compression wave. After the upstream wave is '

reflected to become a downstream traveling wave, the external portion trails away
: since the downstream wave is subsonic relative to the external flow. At this time, 1
fﬁ the shear layer is deflected upward and a leading-edge oblique shock occurs. This
sequence of occurrences can be compared with observed radiation pattern to arrive at

oy Fig. 2.5 for supersonic flow.

3 2.8 Flow in a Shallow Cavity
The basic flow fleld in the shallow cavity can be divided into two regions. The
first half of the flow behaves like the flow over a rearward facing step and the latter

; |
e e
ey

half is similar to that of forward facing step flow, as illustrated in Fig 2.1a.

In an example of "Breakaway Separation” (wherein separation occurs on convex
corncrs even through there is a favorable pressure gradient), the upsiream boundary
layer is unable negotiate the sharp curner and leaves the wall at the corner, splitting
into two regions: (1) a slow recirculating separated region near the base, (2) a free
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shear Iaysr that is awept downstream and reattaches o the cavity floor. As the flow
meets the 80 degres turn at the front face, it undergues a rapid expansion. The
pressure within the separated and recirculation region falls much below the free stream
pressure. This effect and the pressure of tho side wall enhance the cross flow which
in turn affects the flow separation characteristics in this regioa. The soparated shear
layer curves downward and impinges on the cavity floor. The boundary layer grows
from the reattachment point up to a certain extent when the adverse pressure gradient

from the rear face causes separation close to reer face.

2.4 Unsteadiness and Acoustics of Cavity Flows

There are two different type of pressure fluctuationq that can occur within cavities,
a random pressure fluctuation and a strong periodic pressure fluctuation. Karamcheti
(1) found that the periodic pressure fluctuations are accompanied by strong acoustic
radiation from the cavity. The frequency of these pressure fluctuations was found to
increase with airspeed and decrease as the cavity length was increased. In very deep
cavities (L/D = 1 and 2), the pressure fluctuations are mainly periodic but as the
cavity depth is decreased, the fluctuations become random in character. For the shallow
cavity (L/D > 10), the spectrum is smooth and covers a broad band of frequencies
showing that the pressure fluctuations are random in character. As the depth of the
cavity is increased, peaks occur in the spectra indicating that periodic pressure
fluctuations are superimposed upon the random levels. The random component is seen
in cavities where L/D >4 and the periodic component dominate in cavities where L/D
< 4 [63). The random component is most intense near the rear wall of the cavity, but
for very shallow cavities a local region of intense pressure fluctuations occurs where the

flow reattaches to the floor of the cavity.
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Bilanin and Covert (21} analyzed a model of the excitation mechanism suggested
by Rossiter [9). They treated the pressure fluctuation at the trailing edge as an
acoustic monopole. As indicated in Chapter 1, the mass additien and removal process
at the cavity tralling edge Is caused by unsteady motion of the shear layer. This
process produces a piston-like effect at the rear bulkhead (Fig. 2.8), which sets up the
internal wave structure that forces the shear layer.

In flow visualization photogruphs, the shear layer has been observed to roll up
into vortices that travel rearward and impinge on the cavity trailing edge, that would
cause the cavity oscillation mechanism. In supersonic flow experiments, discrete vortices
are not usually seen, but an amplifying sinusoidal motion of the shear layer traveling
toward the trailing edge is often evident. Perturbations to the shear layer indicate a
varying vorticity distribution along its length. The apparent traveling wave motion
along the shear layer is a result of ‘the dominant amplification of the downstream
traveling wave in the cavity. Heller and Bliss (14} proposed that the shear layer
which is subjected to forcing by the cavity internal wave structure would roll up into
downstream trayeling vortices. Thus, the appearance of discrete vortices on the cavity
shear layer is cumpletely consistent with the oscillation mechanism. They conclude that
*vortex shedding” is a manifestation .f the oscillation process, but it is not essential
to the underlying mechanism. Fig.2.\ shows the feedback loop responsible for cavity

oscillations.
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Fig. 2.1 Sketches of cavity flowZield models
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Fig.2.3 Typical pressure oscillation cycle.
(3) Mass removal stops;
(4) Mass addition starts; :
(12) Mass addition ends;
(13) Mass removal starts.
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Fig.2.4 (a) and (b) Stages of trailing edge flow impingement,
(c) and (d) leading edge flow separation within an

oscillation cycle.
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Fig. 2.7 Feedback loop responsible for cavity
oscillations.
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Chapter 3
MATHEMATICAL MODEL S i

3.1 Governing Equations

The governing equations are the three-dimensional, time dependent, compressible,

?
complete Navier-Stokes equations in terms of Reynolds averaged variables. These equa- l‘r
I tions are written in general cooruinates and conservative form [38] as ‘;‘
B 3.2 2 ) @.1) ‘
—U+ F-Fy)+ G-Gy)+ H-Hy)=0 .
; 2ued(r-Fy)e&l0-0v)+ lu-ny) ?'
_a where U is the vector of conserved variables, :
1 T
, U =10, v pw,ge] i
and F, G, H are the inviscid flux vectors, 3
pU, pU2 pUs @32 1
1 2
puU,;+0,§ p puUz+38 p puUs +8Pp
1 3
F=14 pvU, "'aig Pi » G=1/ vaz+az§zp » H= 1] pvl, +32§ P
3
pwU; +3:8 p| pwU, +3&p pwU; +3,% p
(E+plu, (E+plu, (E +p)U,
and F‘, G'. H. are the viscous flux vectors,
-o - r-o -
2 1
af &S Tt 3.3)
2 : 1
’ Gv=1/] | &8 T Fv=1/]| &8 ta
N 1
3&2&3 C AR
; 2 1
d A tn + Viia+ Wi s | RS (wtn +vtua + Weps -qy )
y 22
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B 0 ] ;
3 of
& 7,
Hv=11 | ath, o
ﬁ&"‘u >
3&53‘ UTyy + VT +wry, “qx ,

3
'!‘he contravariant velocity components ( Ul. U’, U‘ ) are defined by '

U=di8'usagt'y +at'w, 6
Uz=di u+atveagtin,

Us =38 usdpt’v 4y’

The stress and heat flux terms used in the equations above are given by

T =( 31§n‘ %&x&&").a'—:«»a,g'?’_; 3.5)
2 x

e ax"-%me‘)%afax‘%.

nsa(]a,:“-gs.,ag‘)-"“—:»f N
& &
q,u-kgr:.

&

where k, n, and m are dummy variables.

And 8 = obx, o = ady, o, = we, C'-t-%z-n.mﬁ’-t.

are defined as follows,

E=e+llz(n8+vl+w8)

The total energy, E, and the inteina} energy, e,

3.6)

e=CT 8.7

x g TN 23
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The perfect gas law
P=(y- 1) e =pRT (3.8)
and Sutherland's laminar viscosity law have been used to complete the system of
equations. For turbulent flow, the total viscosity p, is defined as the sum of molecular
viscosity (p) and the turbulent eddy viscosity ) An algebraic turbulent model is used

to calculute the eddy viscosity.

3.2 Turbulence Model

The eifect of turbulence is accounted for through the concepts of an eddy viscosity, -

B, anc eddy conductivity. In the momentum equations, the molecular viscosity, B, is
replaced by an effective viscosity, p:

p=p+tp=p+pn 3.9

The study of the turbulent flow and adequate modeling of Reynolds stresses (here

it will be referred to as turbulence modeling) are current subjects of research. They

have not yet been fully understood, and up to now, we still cannot find a perfect and '

efficient model.. The . modeling of turbulence is complicated by the fact that several
length scales exist which control the generation, transport and the dissipation of
turbulent l.tinetic energy. A simple empirical model that can estimate compressible
turbulent boundary layers with separated flow has been selected for this study. This
bas two-layer algebraic turbulence model was proposed by Cebeci [39]. It is based on
the Boussinesq upproximation of modeling the general Reynolds stresses by an eddy
viscosity, similar to molecular viscosity. This model was later modified by Baldwin and
Lomax {40].

The mixing length mode! employed in the Baldwin-l.omax model divides the shear
layer into an inner and outer reyion, and is patterned after a method developed for

attached boundary layers by Cebeci [39]. It is a two-layer algebraic eddy viscosity
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mode! in which B, is given by

{‘”"uuv ! y < ’m"
p =

("s)ww 4 y r <V

CTuasu vel

3.10)

il

In the inner region, the eddy viscosity is given by the Prandtl-Van Driest formulation,

B = (kyDplw| 3.1 )

where

D =1.exp(-y+/A+)

}
y'-"v“*% dp.t.% . v

-

In the outer region, Baldwin-Lomax model uses the Clauser formulation for the

outer region,

o

B = KCQI" ....waa") 3.12) '
i
and
- |
Fw“s = min | ymFm, C "yNUR“/Fm | (3.13) ‘ J
The quantities y,, and F_“ are determined from the function: o
" F@) = yIWlIL - exply/An)). (3.14 '

-

In wakes, the exponential term of above equation is set equal to zero. The

quantity F_, is the maximum value of Fly) that occurs in a profile and Yeuo 18 the

value of y at which it occurs. The Klebanoff intermittency correction and U o are
given by
Foe® =0 + S.S(Cm./yw)‘]-' (3.15)
U, = (wtvrsws Jor - (ut+vitws Jos (3.16)

The sccond term in U . 18 taken to be zero (except in wakes). The values of the

constants are:

A+ = 28, C" =16 C =03 C_ = 025
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The outer formislation can be used in wakes as well as in attached and separated
boundary layers. The distribution of vorticity is used to determine length scales so that
the necessity for finding the outer edge of the boundary layer (or wake) is removed.
The inner and the outer eddy viscosity models are combined to form the turbulent
eddy viscosity B in the following manner. First, profiles of B, and B, are obtained on
each coordinate line emanating from the wall. The first point near the wall at which
B, exceeds p_is denoted the "cros: over point". The turbulent eddy viscosity B, is then
equal to p for all points between the wall and the cross-over point, and it is equal to
p for all points above and including the cross-over point.
Some modifications have been done to the model for all the points within and
close to the cavity. These are Degani-Schiff modifications, the multiple-wall modification,
and the wake modifications.

3.2.1 Degani-Schiff modifications {41)

The major difficulty encountered in applying the Baldwin-Lomax turbulence model
to vortical flows is the evaluation of the length scale, Y, and in turn determining
(), for boundary-layer profiles in the cross flow separation region. In Fig. .3.la, a
general F(y) curve is shown. If t!lete is a strong overlying vortex, then F(y) curve may
switch to Fig. 3.1b. In addition to a local peak in F(y) in the attached boundary layer
at y = a, the overlying vortex structure causes a larger peak in F(y) at y = b. The

choice of the peak at y = b results in a value of F o, aNd, in turn, & value of (p)

LU outer

which is much too high. Thus, in general, the computed eddy-viscosity coefficient in

the cross flow scparation region behind the primary separation point wiil be too high.
This will cause the details of the computed flow to be distorted or washed out.
To eliminate these difficulties we have modified our implementation of the

turbulence model. At each computational coordinate the code searches outward, sweeping
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from wall w free stream, in order to find the first peak in F(y), and then cut off the

search when the peak is reached. T, prevent the selection of erroneous peaks which
might be caused by & nonsmooth behavior in Fly), a peak is considered to have been
found when the value of F(y) drops 10 gog of the local maximum value.

For most cases, in the cross flow separation region, the two Peaks in F(y) are
spaced far enough apart that the logic described above will select the first peak.
However, this is not true in the vicinity of the primary separation and immediately
following the secondary separation Under these conditions the code would choose a

value of You Ne8r the top edge of the cavity, Consequently, a cutoff distance is

specified in terms of Yau from the previous value, i.e.,

Yor = C Y aanprovow’ Where C is a constant chosen equal to 1.5

3.2.2 Multiple-wall Modifications (4)

The second modification is the inclusion of multiple-wall effects for points in the
Proximity of concave edges and corners, Eddy viscosity values were computed using the
vertical walls (FF, RF, SW) for such points, in addition to computing eddy viscosity
values using the horizontal wall.s (FP1, P, FP2, SFP) for all the points in the
computation zone. Then an effective eddy viscosity was computed through inverse

averaging. For example, B, was computed as follows for a8 point neer the corner of FF,
SW and F:

) (%o)ﬁ(“):ﬂn*(“/y#)n

T
V(y e+ (y dm+(y)n

B @3.17)

which increased the influence of the wall with the lowest (y+) value.
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3.2.3 Wake-model Medifications
The abrupt change in the eddy viscosity coefficiont from the boundury layer to

the wake is approximated using the concept of a relaxation eddy viscosity model to
represent the different length scales in the problem.
For the cavity, the eddy viscosity 1s calculated by
Bo=8, + - n) - exp (-x10)) (3.18)
where
B, ' the value at the upstream lip,
B, : Baldwin-Lomax eddy viscosity value,
O : instantaneous boundary layer thickness at upstream lip,
x : streamwise distance from the corner.
This modification is known as the relaxation model, which has been shown to
work well for other numeri&l calculations [42). It accounts for the history effects of

the fluid. The eddy viscosity (p) has been set to zero at all the solid surfaces.
3.3 Initial and Boundary Conditions

In computational fluid dynamics, the initial conditions usvally correspond to a real
situation for a transient problem. In practice, initial conditions are obtained from
experiments, empirical relations, approximate theories, or previous computational results.
An improper initial guess may result in solution failure. An important requirement for
the initial condition is that they should be physically as close as possible to the actual
nature of the flow field.

A reesonable approach has been to initialize the entire flow field above the cavity
with the inflow conditions. Within the cavity region, depending on the type of cavity,

the initial conditions are different. In deep cavities, the flow within the cavity is
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subsonic which was known from experimentul observations. Therefore the velocity inside
the cavity has been arbitrerily specified as 10% of its free stream value In shallow
cavities, the shear layer impinges on the cavity floor. As a result, an approximate
velocity profile close to the inflow velocity profile has been specified within the cavity.
The pressure and temperature within the cavity has been set to the free stream value.

Correct boundary.conditions are essential to the success of numerical calculations.
Six faces require attention in the specification of boundary conditions. On solid surfaces,
a no-slip boundary condition has been used so that all the velocity vectors vanish. In
the test cases, the wall has been considered to be adiabatic. The pressure &t the solid
surfaces has been obtained by a zero-order extrapolation from the interior point value
of pressure in a direction normal to the wall. The density is obtained from the state
equation.
u=v=w=0 o6pbn =0 oTon = 0. (3.19)
In the case of supersonic in flow (except in the subsonic portion of the boundary
layer close to the wall), all flow characteristics point from the outside towards the‘
inside of the computational domain. Therefore, ali elements of the primitive variables
(vector U' in Eq. 8.1) have been specified by a profile generated using the two-
dimensional compressible boundary-layer equations for perfect-gas flows (the governing
equations are solved by an iterative three-point implicit finite-difference procedure) [43).
In the subsonic and transonic inflow, all flow characteristics, except one, point from
outside towards the inside of the computational domain. Therefore, only the variables
u, v, w, and T at the inflow are specified. The pressure has been extrapolated from
the computational domain, to allow for the information to be propagated upstream.
The pressure within the boundary layer is maintained at the value of boundary layer

edge.

= Vo L protie?

w=0T=T"T

. | prefle)’ (3.20)

u = “«u i peofils)’ v




supersonic inflow: P = P,

subsonic inflow: P“ = P" (for j above the boundary layer),

. P. (for § within the boundary layer),
P : value of pressure at the boundary layer edge.

When the outflow field is supersonic, the flow characteristics point from the inside
of the computational domain to outside. Therefore, all variables at the outflow can be
determined from the interior flow solution by a zero-order extrapolation. When the
outflew field is subsonic, since theie is only one incoming characteristic, only one analy-

tic boundary condition is required. Therefore, we only specify static pressure, and other

variables are obtained by a zero-order extrapolation,

ows = 0, dvids = 0, dw/ds = 0, dT/os = 0, (3,21) )

6P/ds = 0, (supersonic outflow)
P.=P,, preseure? (SUDsSONIC outflow).
where s indicates the streamwise coordinate.

The far field refers to the flow field at a distance away from the body which is
greater 'than the reference length of the cavity. The boundary conditions are specified
by zero-order extrapolatit;n from inside ‘the computational domain for outldow, and as
free stream conditions for inflow. The pressure values are assumed to be free stream
at this boundary.

duw/én = 0, év/on = 0, dw/dn = 0, (3.22)
o0T/on = 0, P=P,.

On the symmetry plane, the following boundary conditions are used:

du/én = 0, vim = 0, w = .w, (3.23)
o0T/on

0, oP/om = 0.
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Chapter 4
NUMERICAL PROCEDURE

A schematic of a cavity model is shown in Fig. 4.1a. It has been found from

experimental observations, that cavity flows are almost symmetric about the cavity

centerplane (streamwise direction). In order to reduce the computational time and

memory a half span cavity has been modeled. One of the models is shown in Fig.
4.1b.

The next step is the grid generation, which depends upon the flow, the geometric

configuration, computational resources, the required accuracy of the solution, the physical

dimensions, and the boundary layer thickness. In the present analysis, three-dimen-

sional cartesian grids are used because of the geometry. Stretched grids are needed in

all of the three directions, so that the entire computational domain can be covered with

a reasonable number of grid points. In regions which experience large gradients of the

flow properties, such as, close to the solid walls, and shear layer regiou, the grid points

are clustered.

The grids are generated algebraically. The cavity is divided into several zones.
An exponential stretching function given below is used to cluster the grids in each zona:

y-y-[(ﬂﬁkﬁ)-l)(/aﬁk,.”] . @y

where, Yo 18 the maximum value of y in the computational zone. The value of k is

chosen proportional to the clustering needed. The minimum spatial step size is of the
order 10D, and the maximum cell aspect ratio is around 100
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4.1 Explicit, MacCormack, Finite-Difference Scheme (EMKD)

The MacCormack finite-difference method |44] is a variation of the two-step lax-
Wendroff scheme. This scheme is second order accurate in time and space. This
explicit method has restrictions on the time step of integration as given by Courant-
Freidrichs-Lewy [38]. It has been used to solve Euler and Navier-Stokes equations for
numerous practical flow situations, including laminar and turbulent boundary layer

shock interaction.

The predictor-corrector explicit algorithm is summarized below in general coor-

dinates.
Predictor:
8 Py (4.2)
AU, 1= At[AGF, 4+ 840Gy + AcHL ]
ol a
Uiix=Ug 0+ AU;; -
Corrector;
a1 3y sy by (4.3)
AUi.j.g. <At [ ngLj'k'.' V,,Guk + V‘H:Lk]

U:jl.x --;-[U:j.k + UE?..n + AUsﬁ.k]
whereAy, A, Agare forward spatial differences, and Ve, Vo, V are backward differences.

The coordinate transformation is chosen such that A%=AN=Al = 10 This
two step process consists of evaluating spatial derivatives by one-sided differences taken
in opposite directions on alternate steps. Although the one-sided differences are first-
order accurate, the combined predictor-corrector step gives the second order accuracy.

Because of the complexity of the compressible Navier-Stokes equations, it is not

possible to obtain 8 closed form stability expression for the scheme. The most success-

of
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ful attempt to date has been to linearize the set of differential equations und then

study the amplification of the Fourjer components of the solution by the difference
methad applied to the linearized ser.

For stability, the time step is restricted by the CFL (Courant, Friedrichs, and
lewy) condition given by

Cﬂ,:tlmuA‘ 4.4)

At € ELC_FLZ
1+ %%
where )\ =se 18 the maximum eigenvalue of the set of Jacobian matrices, ¢ is the safety

factor (==0.9), and Re is the minimum mesh Reynolds number given by:
Res=min (Re, Reyy, Rea) 45

Reha u AX

Redy .EMA!

M

Rep= w|Az

.

The linear stability analysis imposes a restriction on the time step in each direction
(§.0, and { ).

Atg< min— -1 4.6)
i .‘7( 2 2 T
l ug,+ ng"‘ Wﬁ,"* a 8+ gy“' g:

At, < min— a1

| une+ vn,+ wm, |+ 2V 02+ ny+ nf;

Aty < min— LS
CXT I TN rorory

The global time step is determined as Az-m[m‘.m,,.m‘] .
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For practical computations, especially in the region of large gradients, such as
shocks, strong vortices, and separation, the solution exhibits oscillauic <. These oscil-
lations sometimes will cause the numerical code to "fail”. In orde: to suppress the
oscillations, we add damping terms known as “artificial viscosity” into the differenced

governing equation. The fourth order damping term devised by MacCormack and

Baldwin [45), is given below:

(ax)* 3%!{ r(}&"“;_‘ e, ::z L&Ii) |—" 4.7
b
a) FHGU

The features of the numerical algdrithm have been embodied in a solver written

I
(ay)* %‘{ (}!l[;'a')ev ::z

where 0 <€, < 05 and 0 <g, < 05

in FORTRAN 200 language using 64-bit arithmetic specifically for the CYBER-205
computer [46]. The vectorization executes in € planes. Approximately 3.25 million
words of memory is required for grid points. The mean data processing rate is 5x10¢

cpusitime step/grid point on the CYBER-205 computer of NASA Langley Research Cen-
ter.

4.2 Implicit Upwind, Finite-Volume Scheme (IUFV)
The finite volume discretization is another means of developing difference

approximations to partial differential equations. It is in this form that the equations

3 e m - s
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express rates of change in a finite volume in terms of ths resultant fluxes through the
boundary of the volume. These equations provide average values of the solution over
the volume. The advantage of the integral form is that it remains valid in the presence
of discontinuities in the flow, such as a shock or a separation. The integral form

(stationary control volume) of the governing equations is

9 - 4.8)
ETJ'JJ;U.dV-c-,u;F.ua =0 .

where F = I(F-F), (G-G), (H-H)| and ;-ngz«o. Ny n+ n‘f is a unit normal vector
pointing outward from the surface S, bounding the volume V. We can use the
divergence theorem to change the surface integral to a volume integral

U - (4.9)
u.r,a—t-.dv«-u.r VEdV=0 .

Assuming continuity of the integrand in the above equation, the differential conservation

.

law form of the governing equations can be written as

) 3 9 ) (4.10)
=U F-Fy)+=(G-Gy)+ H-Hy)=0 .

2t + z( V} a“ ( V) stq V)

For generality, the governing equations are put into nondimensional form. We use the
cavity depth as the reference length T

-

- ~ - Pt

p._& p-:-L; . .-‘.'...- . e-—~—z , (4.11)
P-’ Pele 8. Prle

uu.,“g. . v--!,: w-f,—‘,- . 'r.__'!',..m..' .
2 . ' % T. P

The finite volume method is adopted to handle arbitrary configurations since the
method can more easily treat complicated grid structure than finite difference formula-
tions. We can discretize the flow field into a set of ordered hexagonal cells (volumes)

and apply governing equations to each volume directly. Thus, a semi-discrete represen-
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tation of governing equation can be written as

%(U)VL“ *,):.'. l[":(?:’ﬁ ] =0, “iz 3"
Wi

or, in more detail

v et bl T

! ‘
. Ty
(!w ’(F’Fv’h;-.n'(F'Fv’i-i..u ‘G'Gv)kh;gk"c'cv)i.}i-k (4.13) -
0t ) ix Al M X)) P
(H-HoJyud-(H-Ho )ik X
+ 2 =0 i
.14 Y
.
where, for convenience Ly
)
A l=@. 1= N i d
&-%5 &.-r 1 (4.14) L
4
4
An=nui-miL=1, : h
¢
3
AC'(if%-CiJ;:l . “:
4
=2 and by virtue of the integral representation, g i
- _— (4.15) .
' U is regarded as a cell average value rather than a pointwise value at the cell center.
‘ For solving the Navier-Stokes equations, th~ theory of characteristics is crucial
in determining the Jirections of the signal propagation, the information gained from
s characteristic theory. Recently, much interest has been generated in the development
of numerical methods that model the underlying physics, as dictated by characteristic
] theory, at each point. Some of the methods include flux-vector splitting, and flux-
Y
d difference splitting. These methods can be classified as upwind methods and have the
-,J advantage of being naturally dissipative. The advantages of upwind methods over
- g central difference techniques are 1: enhance stability properties, and 2: eliminate
N explicitly artificial viscosity or damping terms.
E;F"“‘"-,;; ;T:T""’““‘“‘w‘“*“"“."*” e :'°T.‘Z —— e e; ;: (’7‘;‘2‘; N ”-5' T e T e V‘" * u -‘"u "'; e ';‘;‘:_
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Since the plonesring work of Steger and Warming(48) in the early 1980s, the

upwind method has grown rapidly. The schemes used in here wre based on the method

developed by Beam and Warming (49,50, The scheme for solving the compressible

Navier-Stokes equations belongs to the same class of ADI methods developed by
McDonald and Briley [64].

After Eulor implicit time integration and linearization, the governing equations
can be expressed in difference form as:

J 28 ar:, a“(aa ae. of 3 as.)
m S\30 U au aU N30 30

=[F-R)+240-0,) +3fH-H][ =-&°

(4.16)

These equations are very di_ﬂicult to solve due to the large banded matrix. The left
Band side requires an inversion of a very large matrix. There are a number of
approximate factorizations to split the resulting large banded block matrix equation into
a sequence of easily solvable equations. We use a three factor block tridiagonal scheme
that is fully vectorizable in which the implicit operator is factored such that each
dir.ectional factor contains the Jacobians associated with that dircction only. The three

factor scheme can be written as _
+3g—(F F) 4-3 ._.(G Q’ *a H- ) AU 417
Jac " out TV [Jac” gutt Y ‘aT.r‘ "t aU=-R-

Apply spatially split approximate factorization

(4.18)
JMH;WGF p.)] AU =.R'

30 I ]
T4t dsglo- °" s 'ﬁm)“" '

r 18

I ] | oo
m+a;ru(a H,) AU-(UM AU

- e

- atp

e B 3. -

o~




29
The solution only requires block tri-diagonal inversions and is followed by the update
step Usts = Us + AU,

The essence of flux difference splitting techniques 151) is the solution of local
Riemann problems stemming from the considerution of piecewise uniform stutes between
cell interfaces and an initial data line. Roe [52] proposed a method of exploiting the
fact that the Riemann solution for any set of linear conservation laws can be easily
computed. Roe's idea was to obtain an exact solution of the Riemann problem for the
following linear hyperbolic system, rather than using an approximate solution to the

exact equation. This system, is approximated by

1) oU (4.19)
—+lAj{Ur, Up)S=0 .

For flux terms, a monotone upstream centered scheme for conservation laws(MUSCL)
approach is used. For example, in the §direction, the spatial derivatives are written

conservatively as a flux balance across a cell as:

| ( % )‘.( p‘%. p“i_/)(%.%) . (4.20)

where the interface flux is constructed as.
. ~ . (4.21)
F%'%[F(q Joelo' ) xu'.u )]“i' :

q+, and q denotes state variables on cell interfaces determinated from upwind biased

interpolations of the primitive variables.

(4.22)

q;.%-qn{ %[ (1-x)a. +( 1+K’K¢] }L .

Q:«%'Qi-{ %[( 1-x)a.+{14x)3.] }m :
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: where "

1— (AO)I = qnl ° q. ' (A.); = qo ° qil

T and the slope limiting is used to maintain monotonicity
N
_'::\“ ZQ=M[o.m‘A.mA..M.@A.’]“A. [} T
(4.28)
2 K.:m[O.UﬂlﬂA.sgnA..BA,snA.)]snA. .
{3-x)
. B Tx
Y !
r%'
pat where
- 1 ,  central difference
A K=
o % »  fluxdifference split
i rewrite the Jacobian metric
-y - (4.24)
A= =T(A e )t
¥ . where
s .
% Ao &2/\_1 : (4.25)
L are diagonal matrices formed from the eigenvalues of A, i.e.
—Egj ’ (4.26) N
-‘% A.“(’qoh»kol\h ls)o ;

f" 3 .
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The contravai t velogity norma! to the cell interfuce s

O, =(tiusd,vet,w al 4.27)

and the ° indicates a Roe averaged variable{53)
In order to develop the solution using considerably less computer time, each
direction of the spatial factor s approximated separately with a diagonal inversion

separately, such as

a
1 a,: . . 1 'S ¢ - B .
[J—A n + 0 301 AU T[J-——A n + A + A ]T AU (4 28)

both side are then multiplied by T:, and hence the I-sweep then becomes:
[ JAI_," 8; A+ GZA- ]I( T‘lAU. )- T'r. (4.29)

Due to the repeated eigenvalues ()‘, =h.=A o b only three scalar tridiagonal LU

$

decompositions are required for each line. The tridiagonal matrix can be written as
‘A‘qM‘-l' Ui.j )(T.‘A U.)‘ ‘+ [ I A’ M 1 U B ]
2 JAt ( i’i" ‘)-A (Mi‘i-’ Ui)](T AU){ (4.30)

.

+7 (Mg Ui (" 40" sty

The metric terms M and state variables U are evaluated at cell centers. After the
initialization and development of the flow, the diagonal inversions are turned off and
more acturate block inversions are turned on.

The Van Leer type flux-vector splitting method [54,56) distinguishes between the
influence of forward and backward moving particles in this model, the interaction
between parcicles is done through mixing of a pseudo-particle going in and out of each

cell according to a given velocity distribution.
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Since the flux vectors are homogeneous functions of degree one in U, they are

expressed in terms of their Jacobiun matrices. Using u similurity transformation allows
Jacoblan matricea to be written as (56, 87, 30l

(4.31)

Fa[ Al TAT'|U

The matrix is a diagonal matrix composed of the eigenvalues of A and is given by

:; : g g :)) (4.32)
A=10 0% 00
0 00 A& O
0 00 0 X
where
Ma=Usluidvedw (4.33)
h=U+ s ,
~ M=U R
The eigenvalues can be decompoud.inw nonnegative und nonpositive components
y WE W% W (4.24)
where

M-"‘*zl | (4.35)
Similarly, the eigenvalue matrix can be decomposed into A.I\‘ A , where A i
made up of nonegative contributions of A and A is constructed of the nonpositive
contributions of A . This splitting of the eigenvalue matriz, combined with equation

(4.7) allows the flux vector to be rewritten as:

Fa1( A’M')T"u.( Z’J’)Unp’ﬁ‘ . (4.36)
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The flux vector has three distinct eigenvalues and can therefore be rewritten as a sum

of three subvectors, as following:

e 'Fa'l-‘"«r?"

+F,
The forward and backward flux vectors F+ and F are formed by inserting A = A®
and A = A:. respectively.

For the purpose of splitting the flux vector, approximate factorization is used to

solve the vector flux split equation, which in delta form, is the following: !
)
- - 2

lumvw{m ;A‘A,-A:az(ﬁ’.‘.)] xl 1441V, B, +414,B; - Atdy (%ﬂ 4.37) ;
ot
+ - 2 xl ‘,

X| 1+81V,Cy +814C; - At | =L )l AU)=-a [ RHS)
!

Qhere

=3 8F B,= (3_0) aH (4.38)
A l(au). 1=] ) ©O 35 )" ;

aQ-F_' BQ-G—! .aHV
o) oS mofi)

AUBU”l-U'.
RHS=A{F +A: F +40G' +4,0 +AH' +4,H" (aﬁma.’,ma’a)
=0iF +ArF +44G +4,G +A(H +A(H - 4 /‘ .

The split flux vector in the above equations is implemented as the flux across a

cell, corresponding to MUSCL type differencing:

ViF +a,F o F u')w’ﬁu’)]‘.% J# U')w'(]u’)]...;. : “.39

The notation F«(U9 . denotes the forward flux evaluated using the metric terms at

the cell interface (1+4) and the conserved stute variables on the upwind side of the

%L
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v, interfuce, obtained by r fully upwird second-order state variable interpolation:
| g = 18U - 08U, (4.40) .
; U".2 = 18U, - 08U

20

All the computational cells are advanced at equal time steps (time-accurate calculations

S i T

[

require global time stepping) correnponding to a speciicd CFL number given by:

=

T

325

CFL=ae{ U 11V o} W o] graa) ) bl ma 0] W |
By | )
a’;‘ After that, the conserved variables are updated “
§ Ustt = Us + AU (4.42) ¢
“}! The features of the numerical algorithm have been embodied in a solver written '
j:,;r using FORTRAN 77 with 64-bit arithmetic specifically for the Cray-2 computer. \
_ Approximately 10 million words of memory are required for 150,000 grid points. The !

mean data processing rate is 6x104 cpusitime step/grid point on Cray-2 of NASA Langley

Research Center.

—— W e w =

. 4.3 Computational Flow Visualization
The visualization of. the solution through graphics is en importunt area in
computational fluid dynamics. This is essential since the amount of data generated by

solving the equations is in the order of millions. Details of flow visualization have

been addressed in (58] The PLOT3D [59] is a popular graphics application program

4 tc create and interactively view flow fleld solutions. It is an application program in

- AAERARAAE adhaimn” AR . . g

3
t
|
|

that it desls specially with computational fluid dynamics grid and data. In the currunt

research, this program has been used extensively to represent the large amounts of data

pictorially. The contours of pressure, density, temperature, and Mach number have been
K plotted.
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4.4 Time Series Analysis
In the current study two characteristic times have been defined for convenience.
The first characteristic time, t , is defined as the time required for a fluid particle
traveling at free stream velocity to traverse the length of the cavity. This parameter
is useful in determining the computational time required to get past the non-physical
initialization of the flow in the computational domain.
v, = WU

But the acoustic waves propagate within the cavity at local sound speed, 80 we can

define a second characteristic time as

t, = l/a = Mt
where a‘is the local sound speed. For reasons of economics, large time steps are
desirable for the computations. ilowever, if this time step is larger than t_, then we
cannot capture the pressure fluctuations. Beside the numerical stability, therefore, there

is ano'ther restriction to the numerical time step. We express that using the frequency

f.>f

Crp pressure fluctuatios

and from the definition f = I/T,
=2 t'CS‘D < tmm nue;umo

=> t,, <min(t,t )
A lot of time dependent data (pressure history) is obtained in the time domain.
A widely used method is to transform this data from the time domain to the frequency
domain using Fourier transforms. Compared with other methods, the frequency domain
representation is much easier to understand and contains the information of harmonic

resonance frequency directly.

The definition of Fourier transformation [61] is given as following:

Flw)= " tllapl-im)dr . (4.43)
4

-
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There are two fluctuation mechanisms that occur in a cavity, a strong periodic
fluctuation, and a random fluctuation. Since we cannot predict the period of a random

fluctuation, we rewrite equation (4.43) as

“Flwla [ tRexplim gt . “sh

The acoustic pressure distributions are represented as overall sound pressure level,

SPL, in decibels which is defined us

2 (4.45)
SPL(})S]OIO;(%).
P:

where the value of reference pressure, P'. is 2x10% Pascals. Then time distributions
of SPL are transformed into frequency distributions using Fourier transformations for

cyclic but non-periodic oscillations [60),

spx.(t):f‘spL(z)ap('.zuf:i)dz .
' (4.46)
where f is in Hertz (Hz).

Computed sound pressure levels are corrected by subtracting
10log (f, /f eparmast) 4.47)
to account for the disparity betw;en the computational band width increment, and the
experimental band width increment.
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Chapter 5
RESULTS AND DISCUSSION

The computational test cases have been chosen in order to compare the flow
structures wi£h different flow conditions (with and without yaw angle), and the
computational results of different schemes. Four cases have been Meled and analyzed.

Case 1: Mach=2.16, L/D=3.0, yaw=00, EMFD Scheme;

Case 2: Mach=2.16, W/D=3.0, yaw=45, EMFD Scheme;

Case 3: Mach=1.65, L/D=6.7, yaw=0s, EMFD Scheme;

Case 4: Mach=1.65, W/D=6.7, yayv:(b IUFV Scheme.

One of the reasons for choosing these test cases has been the availability of

experimental data. Also, it is intended to demonstrate the capability of the numerical -

schemes to mode! the complicated flow features in different flow regions. The flow
conditions and ;:avity ;peciﬁcatiom chosen for the four test cases are given in Table 5.1.
The grid sizes used to re;usont a field size enclosing each cavity are shown in Table
5.2. The field dimensions and cavity dimensions are also shown in the X, Y, and 2
directions for the test cases.

Since the flows being simulated are unsteady, global time stepping has been used
in ordir to maintain the time accuracy. In order to stabilize the initial numerical
transients, the time step has been gradually increased by increusing the Courant
number form 0.01 to 0.7. Shown in Table 6.3 are the characteristic time and the
computational schemes, the number of characteristic times over which each of the cases

has been run, and the amount of CPU (Central Processing Unit) hours used for each

case. 49
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Presented in the figures illustrating these cases are the distributions of velocity

vectors, density, Mach number, temperature, pressure and skin friction coeflicients inside

the cavity. In order to show the three-dimensional effects, the
plotted at different planes.

%w variables are

!
i
1
i
+
i
i

In this study, these quantities are plotted in the

i
.o !

streamwise, crozs flow, and horizonta) Planes. Shown in figures 5.1a, b and ¢ are
representative diagrams of streamwise, cross flow, and horizontal planes. .
The instantaneous streamline plots and the limiting streamline plots, which l:
approximéte the oil flow patterns in experiments, are also shown. The limiting ‘
streamline plots on the cavity floor have been obtained by limiting the particle traces %
to a plane just above the floor. In addition, to demonstrate the transient nature of the ;
cavity flow, time series analysis of the pressure histories at certain locations on the . :‘
floor and lip are displayed. The computational results have been restricted to several :.1
characteristic times. “;
f
6.1 Case 1: Mach=2.16, L/D=3, yaw=00, EMFD Scheme 3

The entire velocity field over the cavity centerplane is shown in Fig. 5.2. Since

the flow is time deper;dent, only a -typical instantaneous velocity distribution is
presented. The most obvious feature

is that the ghear layer bridges the cavity opening
as expected of deep cavities. The shear layer sometimes dips into the cavity and

sometimes it deflects out of the cavity. The flowfleld within the cavity is subsonic.
Experimental investigations also recorded an identical observation (14]. An attached
turbulent boundary layer upsiream of the cavity separates at the lip to form a free
shear layer over the cavity and finally reattaches downstream of the cavity. Two
distinct vortices are seen within the cavity. The interaction of the shear layer with

the rear face causes a strong vortex structure close to the rear face. The vortex

structure close to the front face is relatively weak. In addition to the main vortex
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structures. For clarity, only every other velocity point in the streamwise direction has
been plotted in all the velocity vector plots.

in crder 0 demonstrate the unsteady and three-dimensional behavior of the flow,
the velocity vectors within the cavity at different spanwise planes have been plotted in
Fig.5.3 at two instants of time t, = 40.4 and t, = 656.76). These velocity vectors are
presented at four streamwise planes, moving from the plane of symmetry towards this
sidewall, (ZW = 0.1527, 0.2728, 0.3672, and 0.4415). It can be seen that the flow
structure changes from one instant to the next. In addition to the variation with time,
the spanwise variation is evident. The vortex structures near the front and rear faces
appear to be warped as the side wall is approached.

The instantaneous (t, = 55.76) streamwise density contours at four planes (Z/W
= 0.1527, 0.2728, 0.3672, and 0.4415) are displayed in Fig 5.4a. The shear layer is
evident from these contours. The value of density at the front face region is low and
progressively increases to a high value towards the rear face region. The ;emn for
the increase in density at the rear face region is the interaction of the shear layer
with the rear face and the compression of the fluid. _This compression causes a free
stream shock wave close to the rear face. Also, from Mach number contours, we can
see the shear layer deflects out.into the rear face region, and causes a shock wave in
the freestream. The static temperature within the cavity is slightly higher than the
freestream value, and the density in the cavity changes from a low value at the wall
and increases progressively towards the cavity opening until it reaches the freestream
value. The density decreases in magnitude from the plane of symmetry towards the
sidewall. The streamwise pressure and Mach number contours are shown in Fig. 5.4b
and 5.4c, respectively. The same trends observed in the density contours are seen in
the pressure contours. The puut;ro contours exhibit shock structure weakening in

magnitude from the plane of symmetry towards the sidewall.
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The instantaneous streamline plots generated with "numerical dye injection” at
different vertical planes, stretching from the floor vertically up to the shear layer region
are displayed in Fig. 5.5a. The three-dimensiona) view of the instantaneous streamline
within the cavity are depicted here. The flow inside the cavity consists of a large
counterclockwise rotating vortex, and a smaller clockwise rotating vortex. We can get
the details of the flow structure from Fig. 5.5a and Fig. 8.5b.

The instantaneous velocity vectors at three cross sectional planes (X/L = 0.0679,
0.6852, 0.9571) and two instants of time (t, = 40.4, 55.76) are shown in Fig. §6. It
is seen that the flow structure is not only different at various cross sections bui also
varying with time. The cross flow velocity vectors (at t, = 85.76) at X/1. = 0.06879,
show the flow on the SFP to be towards the cavity- forming one bigger clockwise
rotating vortex, and a smaller counter rotating vortex. The air flow is from the side
flat plate into cavity. The velucity vectors at X/L = 0.6852, and t, = 55.76 show the
fluid is being pumped out from the cavity towards the side flat plate.

The instantaneous limiting streamline patterns on the cavity floor are displayed
in Fig. 5.7a. Since the limiting streamlire plots do not indicate the direction of the
stresses, two components of the shear stress contours on the cavity floor ( r_ and T)
are plotted (Fig. 5.7b), and shear stress vectors at the same instant of time as Fig.
8.7c. The main flow interacts at the rear face and reattaches on the floor close to the
rear face (Fig. 5.7a). The reattached flow moves in the direction of the front face.
Towards the front face of the cavity, the limiting streamlines converge into a line of
separation. There are several nodes and saddle points. This is an instantaneous open
type separation. In addition to the main separation, there is secondary closed
separation on front face. This separated flow is seen to reattach on the floor very close
to the front face. In addition to the streamwise reattachment, a cross flow re-

attachment of the flow is seen close to the sidewall. Close to the front face the
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veloclcy components are small, therefore, the shear stress veciors ure small. Since the
shear layer interacts with the rear face, the magnitude of the velocity components are
larger and therefore the shear stress vectors are larger. Due to the fluid particles are
drawn wwards the sidewall in the rear region of cavity, the low pressure region toward
the sidewall. The shear stress contours are shown in Fig. 5.7b.

The mean pressure coefficien: distribution along the cavity centerline and rear
face, obtained computationally and experimentally [13], are shown in Figs. 5.8a through
5.8f. The specific locations are: (a) flat plate ahead of the cavity (FP1), (b) flat plate
downstream of the cavity (FP2), (¢) front face of the cavity (FF), (d) cavity floor (F),
(e) rear face in vertical plane (RF), and (f) rear face in horizontal direction (FP2). In
general, good agreement is seen between the computed and experimental data. The
computed values of C’ on the rear face are lower than the experimental data. Also,
the computed values of C’ on the cavity floor are slightly lower.

Discrepancies in the computational results can be attributed to the following
reasons:

(1). turbulence model, (2). coarseness of the grids, (3). numerical truncation

error, (4). explicit addition of artificial viscosity.

Shown in Fig. 5.9 are the frequency spectra of the overall sound pressure level
at two locations along the cavity centerline, where data has been recorded. The pickup
points are located in the cavity floor X’/L = 04, and 08. From experimental
observations (18], it is known that there are two resonant frequencies. A time series
analysis in the frequency domain has been performed for histories of instantaneous
pressure. The pressure data have been converted into sound-pressure level (SPL) in
decibels (dB). The frequency domain has been plotted up to 1.2 megaHertz and
compared with the experimeatal data. Basically, the computations predict the resonant

frequencies, but cannot predict the SPL magnitudes accurately. The discrepancies in
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the sound pressure level may be attributed to the relatively short periods of dats

collection.

5.2 Case 2 : Mach = 216, /D = 8, yaw = 450, EMFD Scheme
Because of the yaw angle, this is not a symmetric flow anymore. So we need
to calculate the full cavity. In order to save the time for developing the flow, we used
the primitive variables output file of Case 1 as the initial conditions of this case. We
can envision the cavity fiow with yaw to be a mixed type of two different L/D ratios;
L/D=3 in the streamwise direction and W/D=5 in the crossflow direction.

The instantuneous veiocity vectors (tc = 28.9) of longitudinal planes at four
different spanwise locations, (ZW = 0.0456, 0.6250, 0.8501, and 0.9783) are shown in
Fig.5.10. From this figure, we can see a larger vortex and a smaller vortex within the
cavity, which is a basic deep cavity ‘structure. The instantaneous density contours

(tc=28.9) at the same four spanwise locations are shown in Fig.5:11. The organized

behavior of the shear layer is clearly seen as it bridges the cavity opening. The shear

layer interacts at the rear face and causes a reversed flow within the cavity, resulting
in a biggef vortex. At this instant, the density contours show that mass is being
expelled at the cavity rear face. Due to the expulsion of mass, the shear layer is
deflected up. There is a large region of separation on the rear flat plate (FP2). This
is caused by the expansion around the sharp corner at the rear face. The variation
of properties i1 the spanwise direction of Case 2 shows similarities to the typical
structure of a deep cavity at yaw angle equal to zero.

Presented in Fig.5.12, are the instantaneous (¢, = 28.9) cross flow velocity vector
plots at four axial locations (X/D=0.2874, 0.8676, 2.5166, and 2.9391). At the X/D =
0.2874 location, the flow within the cavity is going in the reverse direction to the

freestream, and form a smaller counterclockwise vortex close to the front side wall

o
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(FEW, see Fig4.12). In the rear side wall, the flow dips into the cavity, and deflects
out in the rear side of the cavity. The density contours of the cross flow are shown
in Fig. 5.13. The shear layer il‘ very stable near the front of the cavity, but there are
& lot of fluctuations ii the rear part cf the cavity. We still can see the shear layer
bridge the cavity. Pressur: and Mach number contours are shown in Fig. .14 and
Fig. 5.18. Both th: lonyitudinal and the cross flow direction flgures indicate ke
characteristics of a deep cavity.
The instantaneous (t, = 28.9) particle traces limited to four streamwise planes
(W = 0.0456, 0.321, 0.85, and (.9783) ere displayed in Fig. 5.16. The formation of

a larger vortex and two counter rotating vortices are evident from these figures. The

particle traces limited to cross flow planes at five different locations (X/D = 0.2874, '

0.8676, 1.7998, 2.5165, and 2.9391) are shown in Fig. 5.17. The particle traces at four
different horizontal planes within the cavity (Y/D = 0.0276, 0.2323, 0.5, and 0.8936) are
shown in Fig. 5.18. We can observe that shear layer brings in air mass and
momentum. The particle traces are shown in Fig. 5.19. The shear layer first impinges
on the rear face, then it deflects toward the rear side wall. It bends downward
towards the cavity ﬁoor: A clockwise rotating vortex is formed within the cavity.
From the top view, clockwise vortex is the main vortex direction. That is the most
distinctive difference from the zero yaw angle cavity flow. In Cese 1, the main vortex
is predominantly in the vertical plane of the cavity. But in Case 2, the predominant
plane of the main vortex inclines at a certain degree with the vertical plane. It is not
only rotating in the streamwise direction but also in the horizontal plane.

The shear stress vectors and contours on the cavity floor are shown in Fig. 5.20a

and Fig. 5.20h. As expected, the main concentration of the shear stress is at the
downstream corner of the cavity.
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5.3 Cases 3 and 4 . Mach=1.88, L/D=6.7, EMFD and IUFV Schemes

In an attempt to compare the colutions of the EMFD andé IUFV schemes, Case u
3 and Case 4 are discussed together. The ‘major simiiar fentures botween these cases
are as follows: 1. the physical domain and the gvid which covers it; 2. the governing .
squations of the flow; 3. the turbulence mudel; 4. initia! and boundary conditions; 8. the >
physical elapsed times (up to two significant digits). The major nonsiniilar features }

between these cases are the following: 1. the solution aud discretization algorithms; 2. !

the munner in which the physical domain is mapped on to the computational domain, '

lLe., the evaluation of the coordinate transformation metrics and Jacobians; 3. the 3
numerical dissipation, i.e., the artificial dissipation of EMFD versus the natural '
dissipation of IUFV; 4. although the total elapsed times are similar, the computational )
time steps which add up to the elapsed time are totally differeat; 5. 32-bit arithmetic : |

(half-precision) of the CYBER-205 computer is used for the EMFD scheme, but 34-bit
arithmetic of the CRAY-2 computer is used for the IUFV scherue. ) 4

A preliminary numerical study was conducted to determine the effects of eddy
viscosity. Wirst, a case was run without any eddy viscosity, i.e. as a laminar flow
Then, the eddy viscosity was included in the computations only on the hurizontal wa!ls.

Both of the test cases, predict' the shear layer impinging on the cavity which is

incorrect for open cavity flow. When the eddy viscosity is computed as modified as
described in chapter 3, then the correct predictions are obtained.

The instantanecus( t,=3.263 ) velocity vectors at two spanwise planes
(Z/W=0.7881, 0.9764) of both cases are shown in Fig.5.21. In both cases, we can see
a ciockwise rotating vortex which dominates the cavity. The shear layer is clearly seen
to bridge the cavity in both cases.

The density contours( t“=3.263 ) of both cases in various spanwise planes are

displayed in Fig.5.22. The density contours show that mass is being expelled at the
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rear portion of the cavity. Due to the oxpulsion of mass, the shear layer is deflected

up. We can see 8 shock generated at the reer face, and therc Is separation on the

rear flat plate (FP2).

fc.!

The instantaneous( t,=3.253 ) Mach number contours of both cases in various :
s
spanwise planes are shown in Fig.6.23. Whon the shear layer is deflected up in the C!
rear portion of the cavity, we can see the vortices generated in the shear layer. The

comparison of instantaneous streamlines( t,=3.283 ) in various planes of both cases )

-

are shown in Fig.5.24. We can see a big vortex within the cavity, and the shear layer

is deflected out in the rear portion of the cavity. The instantaneous limiting :%
streamlines( t,=3.253 ) on the cavity floor of both cases are shown in Fig525. We : !
can see the flow reattachment in the rear portion of the cavity. Then the flow is in o

the upstream direction, and finally, it separates on the front portion of the cavity.
Also, we can see the three-dimensional separction lines in both cases. In Case 3, there

is a very strong separation generated in the middle portion of the cavity.

-
c- =

From above figures we can understand that both schemes produce approximately
similar flow structures in the cavity.

]

-

The instantaneous( t,=12.675 ) velocity vectors of longitudinal planes st two
spanwise locations( Z/'W=0.4857, and 0.7881 ) are displayed in Fig.5.26. Note that
these figures are for t,=12.875, which is 9.8 characteristic times after the instant of
Fig.5.21. The general flow structures are similar. A single vortex dominates the
cavity. The shear layer interacts with the rear face and it deflects up. The density

i
|

contours( ¢ =12.875 ) of the same spanwise locations as Fig.5.26 are shown in Fig.5.27.
When the shear layer is deflected up, shock waves are generated in the rear portivn
of the cavity.

The instantaneous (t o = 12.876) total pressure contours of longit .dinal planes at
various spanwise locations (Z/W=0., 0.3488, 0.6027, 0.7327) Jof both casea are shown in
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Fig.6.28. The vortex cells are seen to exist in the shear layer. The discontinuous
vortex is distributed from the lip of front face to the rear face. As, we also can see
from the density contours at ‘wo different instants, that is t,=3.253 (Fig.6.22) and
t,=12.878 (Fig.5.27), the vortex cells change their positions. Somc vortices are above
the shear layer towards the rear of tho cavity. So, we can conclude that there is
vortex shedding phenomena existing in the shear layer in both cases. That is, it dips
into the cavity and brings mass with it. Then it bridges the cavity for a few instants
with no mass entrainment between the internal and external flows. Finally, when the
shear layer deflects up to open the cavity, vortices are shed from the cavity to outside.
Th;s phenomenon is confirmed by the solutions of both schemes as evidenced with the
total pressure contours and density contours. Hence it is concluded that the vortex
shedding phenomenon captu_ted here computationally is a physical one.
The time averaged pressure coefficients from both solutions are shown in Fig.5.29.
The plotted Cp distributions are for the cavity floor centerline, the centerline on the
rear face, spanwise distributions on the cavity floor and the rear face, and the
longitudinal direction on the side wall. Generally tney show good agreement with the
ex.perimental data. The predictions of the IUFV method are slightly better than those
of the EMFD method.

The maximum stable time step for the IUFV code (7.48x107) is approximately 1.7
times that of the EMFD code (4.39x10+). This comparison is for the solutions advanced
to the same characteristic time. However, each time step computation with the JUFV
code takes significantly more computer time than the EMFD code. Therefore, a bettor
comparison can be made as follows. The EMFD code needs 4 megawords computer
memory, and 5.68 CPU hours for each characteristic time. The IUFV code needs
approximately 10 megawords computer memory, and 4.31 CPU hours for each
characteristic time. That is, the IUFV scheme is approximately 30% fuster but it
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requires 2.6 times more computer memory. - Note that the maximum time step (10+)
is at least one order of magnitude smaller than the characteristic times t, (1.5x104) z p
and t_ (9.1x104). This is necessary to capture the physical fluctuations with the ’
!
numerical time accurate solution advancing. . .
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Table 5.1. Test conditions for the four cases

Case
No.

Mach (M)
number

Tin K
static

Re/meter
in million

Pin Pa
static

ysw
angle

inm

Width
inm

inm

2.16

168.1

6.56

6430.1 0

0127

0638

0381

2.16

168.1

6.56

6430.J 4s°

0127

0635

0381

1.65

210.3

6.56

11425

0

1108

7458

1.65

2103

6.56

11425

1108

0727

7458

Table 5.2. Cavity dimensions and computational grid size

No.

Casel—

Grid Size

Field Dimensions

Cavity Dimensions

Block

XY

A X

Y

X

Y

A

97 | 60

36| .1076

0587

0512 0127

03175

0381

97 60

n 10764

0587

1024 0127

0635

0381

120| 63

28| -107¢

3753

1163

7458

1108

0727

27 1163

1.189

3753

37 0727

7458

1108 0727

7458

1108

i
\
i
i
4
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Table 5.3 Computational tims requirements

t; characteristic
time in millisecond

number of
tc run

CPU
hours

computer

0679

56

24.63

Cyber 205

0679

289

25.61

Cyber 205

1.5550

12.875

73.12

Cyber 205

1.5550

12.875

48.6
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Fig. 5.20m Instantancous shear stress vectors on the cavity floor.
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Fig.5.29. Mean pressure coefficient diswribution on the cavity along the (s) centunline of cavity )
floor, (b) centerline of rear face, (c) crossflow line at Y/D=0.24 on the rear face, (d) crossflow

line at Y/D=0.68 on the rear face, (¢) crossflow line at Y/D=0.94 on the rear face, (f) crossflow

line at X/L.=0.204 on i~ floor, (g) crossflow line at X/L = 0477 on the floor, (h) crossflow

line at X/L =0.75 on the floor, (i) crossflow line at X/L = 0.885 on the floor, (j) crossflow line

at X/L.=0988 on the floor, (k) lo itudial line at Y/D = 0.683 on the gide wall.



Chapter 6
CONCLUSIONS AND RECOMMENDAT IONS

Computational simulations of deep cavities in supersonic regimes have been
performed. Two three-dimensional numerical models have been used to analyze the
uzsteady flow characteristics of cavity flows. The validity of the codes have been tested
by analyzing turbulent ﬂow§ past cavities. Computational simulations of the self h
induced oscillatory flows have been generated through time accurate solutions of the 5

Reynolds averaged full Navier-Stokes equations. These governing equations have been

solved by using an explicit, finite-difference method, and an implicit, finite-volume
method. The Reynolds stresses have been modeled using the Baldwin-Lomax algebraic
model with certain modifications. Time averaged and instantaneous results have been '
obtained, and quantitative comparisons with experimental data have been made in terms ’
of mean static pressure and frequency spectra within the cavit,. Computational
simulations of cavity flows are important, because parametric studies on three-
dimensional cavity flows can be ‘conducted with relative ease and the time dependent
properties as well as time averaged values can be obtained. In addition, the flow

structure within the cavity can be visualized computationally. Thege computational

cepabilities are meant to complement the e«perimental work in obtaining a more

complete understanding of the flow features within the cavity.

Comparing the flow structures of Case 1 and Case 2, we can see the effect of

yaw. When the yaw angle is zero, the length scale which determines the flow structure

~
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is length-to-depth ratio. However, when the yaw angle it nonzero, there is no longer
& single length scale for the flow. However, the general structure for L/I) < 3 and
W/D < 8, is still an open cavity flow. The dominant directions and inclinations of
the vortices are dramatically different. The number of vortices are also very different
from the zero-yaw flow.

The vortex shedding from the cavity opening is captured computationally. This
is caused by the motion of the shear layer as it moves in and out of the cavity. Since
this shedding is predicted by the numerical solutions from both codes, it is believed to
be a physical phenomenon. It is also believed that this shedding influences the cavity
aet;mtics significantly.

For the explicit code, the explicit addition of the artificial viscosity has the
tendency to smear out the instantaneous pressure values in the cavity floor region.
'iheref:..’e, a time accurate n.umerical scheme that is robust and capable of yielding good
results without the addition of artificial viscosity, results in better time dependent
results. The implicit upwind scheme, which is naturally dissipative, produces better
time dependent data. In addition, clustering the grids near the points where the instan-
tal'zeous pressures are picked, also yields better results.

Three-dimensional calculations are very expensive, because it takes a long
computational time to get the results. Y wo-dimensional calculations of the cavity
centerplane can be used to develop the cavity flow. When the cavity flow is fully
developed (about two characteristic time), then the solution data for the centerplane can
be treated as the new initial conditions for the three dimensional cavity. In Case 1,
such a treatment can save 86% of CPU times and in Case 3 and 4 this treatment can
save 80% of CPU seconds to develop the cavity flows.

The acoustic phenomena is a very important topic of cavity flows. The acoustic

waves generate an additional 20 dB sound pressure level jump in the harmonic frequen-
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cies. Although we sttempted the acoustic analyses of our results for Cases 2-4, they
have not been completed. An extension of this work should complete this analysis.

Quantitative comparison with experimental data have been made in terms of mean
static pressure and acoustic frequency spectra within the cavity. While most of this
comparison is favorable, the numerical solution of Case 1 appears to underpredict the
amplitude of th- =armonic frequencies. This may be attributed to "too much viscosity”
due to numerical damping and the eddy viscosity, that alters the pressure oscillations.
ft further study using improved numerical damping and eddy viscosity is needed.

It is also recommended that the temperature distributions, which are computed
herein, are evaluated to show the heat transfer characteristics in a cavity. This is
particularly important for high speed flows.

It is realized that a better comparison of the two schemes can be obtained if both
codes were run on the same computers. A further study should be conducted with this

consideration.
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